俄罗斯世界杯投注站[主頁]欢迎您

2022世界杯投注
设为首页  |  加入收藏
 首页 | 院系概况 | 教育教学 | 专业建设 | 学科建设 | 党建工作 | 团学工作 | 招生就业 | 实践教学 | 数学建模 | 数学园地 | 学校首页 
数学园地
 数学历史 
 数学名家 
 数学文摘 
 趣味数学 
当前位置: 首页>>数学园地>>数学历史>>正文
 
寻找数学的基础:集合论的创立(1)
2013-02-27 16:02   审核人:

寻找数学的基础:集合论的创立(1)

集合论的创立者格奥尔格·康托尔,1845年3月3日出生于俄国圣彼得堡(前苏联列宁格勒)一个商人家庭。他在中学时期就对数学感兴趣。1862年,他到苏黎世上大学,1863年转入柏林大学。

当时柏林大学正在形成一个数学教学与研究的中心,他在1867年的博土论文中就已经反映出“离经叛道”的观点,他认为在数学中提问的艺术比起解法来更为重要。的确,他原来的成就并不总是在于解决间题,他对数学的独特贡献在于他以特殊提问的方式开辟了广阔的研究领域。他所提出的问题一部分被他自己解决,一部分被他的后继者解决,一些没有解决的问题则始终支配着某一个方向的发展,例如著名的连续统假设。

1869年康托尔取得在哈勒大学任教的资格,不久就升为副教授,并在1879年升为教授,他一直到去世都在哈勒大学工作。哈勒是一个小地方,而且薪金微薄。康托尔原来希望在柏林找到一个薪金较高、声望更大的教授职位,但是在柏林,那位很有势力而且又专横跋扈的克洛耐克处处跟他为难,阻塞了他所有的道路。原因是克洛耐克对于他的集合论,特别是他的“超穷数”观点持根本否定的态度。由于用脑过度和精神紧张,从1884年起,他不时犯深度精神抑郁症,常常住在疗养院里。1918年1月6日他在哈勒大学附近的精神病院中去世。

集合论的诞生可以说是在1873年年底。1873年11月,康托尔在和戴德金的通信中提出了一个问题,这个问题使他从以前关于数学分析的研究转到一个新方向。他认为,有理数的集合是可以“数”的,也就是可以和自然数的集合成一对一的对应。但是他不知道,对于实数集合这种一对一的对应是否能办到。他相信不能有一对一的对应,但是他“讲不出什么理由”。

不久之后,他承认他“没有认真地考虑这个问题,因为它似乎没有什么价值”。接着他又补充一句,“要是你认为它因此不值得再花费力气,那我就会完全赞同”。可是,康托尔又考虑起集合的映射问题来。很快,他在1873年12月7日又写信给戴德金,说他已能成功地证明实数的“集体”是不可数的了,这一天可以看成是集合论的诞生日。

戴德金热烈的祝贺了康托尔取得的成功。其间,证明的意义也越来越清楚。因为康托尔还成功地证明代数数的集合也是可数的。所谓代数数就是整系数代数方程的根,而象π与e这样的不能成为任何整系数代数方程的根的数,则称为超越数。

早在1847年,刘维尔就通过构造的方法(当时大家认为是唯一可接受的方法)证明了超越数的存在,也就是具体造出超越数来。可是,康托尔1874年发表的有关集合论的头一篇论文《论所有实代数集合的一个性质》断言,所有实代数数的集合是可数的,所有实数的集合是不可数的。因此,非代数数的超越数是存在的,并且其总数要比我们熟知的实代数数多得多,也就是说超越数的集合也是不可数的。

2009-05-17

关闭窗口

Copyright © 2007-2014  All Rights Reserved.  俄罗斯世界杯投注站 版权所有  站点地图

地址:河南省 新乡市 金穗大道东段 俄罗斯世界杯投注站 A-03#楼3楼  电话:0373-3683022、3682617、3682767  邮编:453003  Email:xxxysxx@126.com